

Forward-looking Statements

This presentation is prepared by OliX Pharmaceuticals, Inc. (Hereinafter "OliX," or the "Company") to provide information to potential investors. Copying or distribution of any materials included in this presentation is strictly prohibited. Any violation of the rules may constitute a violation of the relative securities law.

All information regarding the Company's business performance and financial results included in the presentation are prepared based on Korean International Financial Reporting Standards. The forward-looking statements are not individually verified. The statements are related to future events, not past, and mean management status and financial performance based on the company's views and assumptions. They may be identified through the words such as "anticipate", "predict", "plan", "expect", "(E)" and other similar expressions. Actual results, performance or events may differ materially from those projected in such statements due to, without limitation, general economic and business conditions and other changes in the regulatory and legal environment. The matters discussed herein may also be affected by risks and uncertainties. Also, the future prospects are based on the published date of this presentation with current market condition and the Company's management direction. They are subject to change without notice as a result of changes in the market conditions, the company strategies and other conditions.

The Company, its subsidiaries, advisors or representatives are not responsible for any loss including, without limitation, negligence resulted from using the information included in this presentation.

This presentation does not constitute a solicitation of any offer to purchase securities or an inducement to engage in any investment activity. No part of this presentation, or the fact of its distribution, should form the basis of or be relied upon in connection with any contract or commitment or investment decision whatsoever.

Contents

Prologue

Chapter 1. Company Overview Chapter 2. Core Technology Chapter 3. Growth Potential Chapter 4. Core Programs Appendix

Pharmaceuticals

01 Company Overview

- 1. Company Overview
- 2. History
- 3. Management Team
- 4. Scientific Advisory Board

Developing novel therapeutics based on proprietary RNAi platform technology

Status

Company Name	OliX Pharmaceuticals, Inc.		
CEO & Founder	Dong Ki Lee		
Date of Establishment	Feb. 26, 2010		
Headquarters	Ace Gwanggyo Tower1, Suite 1014, 17, Daehak 4-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16226, Republic of Korea		
Number of Employees	87 (62 in R&D, 16 in OliX US) (Doctorate holders: 29, Master's degree holders: 29)		
Major Business	Development of next-generation nucleic acid therapeutics based on RNAi technology		

Shareholders

		(Dec. 2020)
Shareholder name	No. of shares (common stock)	Share (%)
Major shareholder etc.	4,002,514	29.56%
Hugel, Inc.	355,592	2.62%
Etc.	9,183,954	67.82%
Total	13,542,060	100.00%

Corporate Philosophy

Our Mission Contribute to the Health and Happiness of Mankind Using Cutting-Edge Technology

Subsidiaries

OliX US Boston	Preclinical development & pharmacology, CMC, clinical, regulatory, QA
OliX US San Diego	RNAi research through chemical modification of siRNA & development of analytical method for siRNA
mCureX Therapeutics, Inc.	Development of nucleic acid therapeutics and vaccines based on mRNA technology

2. History

Establishing Platform Technology

>2010

- 02 BMT, Inc. is established
- 03 Exclusive license on asymmetric siRNA is obtained
- 09 Certified as a venture company (Kibo Technology Fund)

2011

- 06 Exclusive license for asymmetric lasiRNA is obtained
- 10 Company affiliated research center is certified
- 12 cp-asiRNA platform development is initiated

2012

11 Company moves to Gasan Digital Complex

2013

- 05 A patent application for cp-asiRNA platform is filed
- 11 Out-License Agreement for OLX101A with Hugel is made (Asia)

2014

- 08 Series A funding is completed
- 09 OLX201A is selected as 'Korea-Singapore R&D project' (Ministry of Health and Welfare)
- 10 Renamed to OliX, Inc.
- 11 OLX101A is selected as a 'KOREA Drug Development Fund' project (preclinical)

> 2015

- 04 OLX103 is selected as a Technology Development Support Project (SME Business Administration)
- 06 Hugel Inc. makes a strategic investment

in OliX

2016

- 07 Hypertrophic scar therapeutics data published in Journal of Investigative Dermatology
- 12 CEO receives the Minister of Health & Welfare Award

Entering into Clinical Stage

2017

- 01 Company moves to Suwon
- 01 Clinical trials for OLX101A approved by MFDS
- 05 Asymmetric lasiRNA platform is patented in the US
- 10 OliX passes technology evaluation (A,A) for IPO

2018

- 05 Phase 1 trial for OLX101A is completed in Korea
- 05 Phase 1 trial for OLX101A is approved in UK
- 07 Listed on the KOSDAQ
- 10 OLX101A is selected as a 'KOREA Drug Development Fund' project (IND for Phase 2, FDA)
- 10 Established OliX US, Inc. in Cambridge, US
- 11 Phase 2 trial for OLX101A is approved in KOREA

Initiating a Global Clinical Trial

2019

- 01 Established R&D Lab in San Diego
- 03 Out-Licensing Agreement for OLX301A with Théa (EU, MEA, Africa)
- 11 Phase 1 trial for OLX101A is successfully completed in the UK

2020

- 03 GalNAc Conjugation Technology from AM Chemicals is introduced
- 06 R&D Supply Contract on GalNAc-siRNA platform is signed
- 10 Expanded Out-Licensing Agreement for OLX301A,301D, two optional pipeline with Théa (Worldwide excl. Asia-Pacific)
- 12 Certified as a Family –friendly and an Innovative pharmaceutical company

2021

- 01 Established mCureX Therapeutics, Inc.
- 02 Received KNDA (Korea New Drug Award)

- 2015 Cell-Penetrating asymmetric siRNA (cp-asiRNA) is patented
- **2013** Long Asymmetric siRNA (lasiRNA) is patented
- 2010 Asymmetric siRNA (asiRNA) structure technology is patented
- 2009 Paper on asymmetric siRNA structure technology is published (Molecular Therapy)
- **2004** Research on RNAi technology is conducted (POSTECH, Sungkyunkwan Univ.)

3. Management Team

In-house expertise covering from R&D, clinical trials to commercialization

Development Shin Young Park EVP

- Ph.D. in Pharmacy, Seoul Nat'l Univ.
- Preclinical toxicology expert
- Nonclinical toxicology project manager for Ionis, KIT
- Toxicologist, DABT

Chemistry Dongwon Shin Senior Director (Olix US)

- Ph.D. in Organic Chemistry, University of California, Riverside
- Senior Staff Scientist, TriLink Biotechnologies, LLC
- Synthesis specialist

<u>CEO</u> Dong Ki Lee

Makes strategic decisions for the overall R&D process

- B.S. in Chemistry, KAIST
- Ph.D. in Biochemistry, Cornell University
- Assistant Professor, Chemistry Dept., POSTECH
- Professor, Chemistry Dept., Sungkyunkwan Univ.

Research Sun Woo Hong

Vice President

- Ph.D. in Chemistry, POSTECH
- Research Professor, Dongguk Univ.
- Improves platform technology & supervises research
- CEO of mCureX

Management Chung Gil Kang Vice President

- B.S. & M.S. in Management Science, KAIST
- Director, Kumho, Powerlogics
- Director, L&S Venture Capital

Legal Affairs Young Hye Baek Senior Director

- B.S. & M.S. in Biology, KAIST
- Patent lawyer
- FirstLaw P.C.
- Y.P. Lee, Mock & Partners
- Legal Dept., LG Household & Health Care

4. Scientific Advisory Board

Scientific Advisory Board advising on R&D, clinical trial development, and technology commercialization.

Platform Technology

John Lis

Gene Expression, Oligotherapeutics

Distinguished Professor, Cornell UniversityMember, National Academy of Sciences

Ophthalmology

Demetrios Vavvas

- Ophthalmology (AMD, Retina, Diabetic, Glaucoma)
- Associate Professor of Ophthalmology at Harvard Medical School
 Monte J Wallace Ophthalmology Chair in Retina at Mass Eye & Ear Infirmary (MEEI)

Hye-Won Chung

Ophthalmology (AMD, Retina, Retinitis pigmentosa)

- Associate Professor of Ophthalmology at Konkuk University
- Member, The Macular Society

Hepatology

Yury V. Popov

Hepatology

- Assistant Professor of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School

Gordon Jiang

- Hepatology
- Transplant hepatologist and physician-scientist at Beth Israel Deaconess Medical Center, Harvard Medical School

Aaron Hakim

Hepatology

- Clinical Fellow in Medicine (EXT) Beth Israel Deaconess Medical Center, Harvard Medical School

Olix Pharmaceuticals

O2 Core Technology

- 1. What is RNA interference (RNAi)?
- 2. Limitations of Existing RNAi Technology
- 3. asiRNA
- 4. cp-asiRNA
- 5. GalNAc-asiRNA
- 6. Status of Global siRNA Deals

1. What is RNA interference (RNAi)?

Small molecule (1st generation) & antibody (2nd generation) drugs inhibit protein activities Oligonucleotide (3rd generation) drugs inhibit protein synthesis

OliX

Ъ

1. What is RNA interference (RNAi)?

RNAi therapeutics is the third-generation drug development platform that can efficiently target and theoretically silence all disease-causing genes

3rd Drug Development Platform - Oligonucleotides

- Use oligonucleotides (such as chemically synthesized DNA or RNA) as drugs
- Act on mRNA² before protein synthesis
- Can target genes known to be "undruggable" by small molecules or antibodies
- One platform technology can quickly develop novel therapeutics against a variety of diseases (3-5 months)

RNAi Technology

siRNA (RNAi-triggering molecule) (double-stranded small interfering RNA) (double-stranded small

in Aug. 2018

Note 1) Source: Pharmacol Ther. 2017 Jun;174:138-144

Undruggable Target: Disease sites undruggable with existing or new drugs

Note 2) mRNA (Messenger RNA): It is created using DNA as a template and produces a protein through translation based on sequencing.

1. What is RNA interference (RNAi)?

RNA interference technology: The most powerful oligonucleotide technology

Opens the door to drug development for "undruggable targets"

Rapid production of new siRNA drug candidates is possible

Note 1) The RNA-induced silencing complex or RISC is a multiprotein complex which incorporates double-stranded small interfering RNA (siRNA) to recognize mRNA and cleaves the mRNA.

2. Limitations of Existing RNAi Technology

The structure of siRNA causes adverse events & delivery problems

Asymmetric siRNA (asiRNA) is a unique gene silencing technology developed by OliX

4. Cell-penetrating Asymmetric siRNA (cp-asiRNA)

Solves delivery problems and reduces adverse events of existing siRNA technology

Reduces the side effects of conventional siRNA

Eliminates the risk of toxicity caused by delivery vehicles

Investor Relations 2021 15

Amenable to large-scale

synthesis and analysis

Secured asymmetric GalNAc platform for liver-targeted delivery

Licensing deals driving the RNAi industry

[Major licensing deals from global RNA therapeutics companies for the past four years]

Licensor	Licensee	Year	Deal Size (USD)	License Target	Stage
	Théa	2020 /2019	0.81B	Ophthalmic Diseases (4 targets)	R&D
UIX	Undisclosed	2020	Single-digit m research funding ► Mega deal	Liver Diseases (GalNAc)	Discovery and R&D
	Regeneron	2019	>1B	Ophthalmic, CNS Diseases	R&D
Alnylam	Sanofi	2018	>1B	Hemophilia	Phase 2
	Vir	2017	>1B	HBV, Infectious Diseases	Phase 2
	Roche	2019	>1.7B	HBV	Phase 1
	Novo Nordisk	2019	0.36B/target 🕨 Mega deal	Liver Disease, NASH, etc. (30 targets)	R&D
Dicerna	Eli Lilly	2018	0.35B/target 🕨 Mega deal	Cardiometabolic Disease, etc. (10 targets)	Phase 1
	Alexion	2018	>0.64B	Complement-mediated Diseases	R&D
	Boehringer Ingelheim	2017	>0.2B	NASH	R&D
	Takeda	2020	>1B	Liver Disease (AATLD)	Phase 2
Arrownead	Janssen	2018	>3.7B	HBV	Phase 1
	Takeda	2020	Single-digit m research funding ▶ Mega deal	Undisclosed	Discovery and R&D
Silence	AstraZeneca	2020	>4.2B	Cardiovascular, Metabolic Diseases, etc.	R&D
	Mallinckrodt	2019	>2.1B	Complement-mediated Diseases	Phase 1

- 1. Generality and Expandability of OliX Platform
- 2. Development Strategy

1. Generality and Expandability of OliX Platform

Rapid selection of drug candidates based on OliX platform technology Theoretically, all genes can be inhibited at high efficiency

Expandability of the cp-asiRNA platform

Note 1) Drug sequence: binds the complementary sequence of the target mRNA to induce degradation of the target. (= Antisense RNA, Guide strand)

RNAi-based therapeutics targeting incurable diseases

Indication Area	Program	Indication	R&D	Animal POC	Preclinical	Clinical	Remarks
	OLX101A	Hypertrophic Scar					Hugel (Asia)
SKIN	OLX104C	Androgenic Alopecia			(Ко	rea) Currently in P	Phase 2
					(US) Currently in Phas	se 2
	OLX301A	Dry & Wet AMD					Théa (Worldwide Excl. Asia-Pacific)
• EYE	OLX301D	Subretinal Fibrosis					Théa (Worldwide Excl. Asia-Pacific)
	OLX301E	Wet AMD					
	OLX304A	Retinitis Pigmentosa					
							,
	OLX701	Liver Fibrosis					

	OLX703	HBV		
LIVER	OLX702	Liver Disease (NASH, Diabetes etc.)		
	OLX701	Liver Fibrosis		

00	OLX201A	Idiopathic Pulmonary Fibrosis		
LONG	OLX204A	COVID-19		

CNS &	OLX401A	Neuropathic Pain			
Oncology	OLX801A	Cancer Immunotherapy			

Pharmaceuticals

04 Core Programs

1. Hypertrophic Scar (OLX101A)

_100

1.8.1

75 %

50

- 2. Androgenic Alopecia (OLX104C)
- 3. Age-related Macular Degeneration (AMD)
 - Wet & Dry AMD (OLX301A)
 - Subretinal Fibrosis & Wet AMD (OLX301D)
- 4. Respiratory Diseases (OLX20X)
- 5. Liver Diseases (OLX70X)
- 6. License and Collaboration Status

1-1. OLX101A: Hypertrophic Scar

High rate of hypertrophic scar formation due to surgery or accident - Unmet medical needs due to limitations of existing therapy

What is hypertrophic scar?

Prospect for global hypertrophic / keloid scar market (USD Billion)

Hypertrophic Scar

- Skin abnormalities that are characterized by excessive deposition of collagen in the dermis after surgery or injury
- Caused mainly due to the imbalance of synthesis and degradation of collagen
- Occurs in 39-68% of patients after surgery

Keloid Scar

- Abnormal proliferation of scar tissue
- Caused mainly due to the imbalance of synthesis and degradation of collagen

Limitations of current treatment

Existing drugs	Limitations and Unmet Needs
Silicone sheets	 Unclear efficacy and compliance issue Long-term treatment (6 months to 1 year) necessary
Physical compression therapy	 Unclear mechanism of action and efficacy Long-term treatment (6 months to 1 year) necessary
Steroid injection	• High risk of recurrence (9~50%), risk of whole-body toxicity
Surgery	• High risk of recurrence (>50%), accompanied by pain

X Source: Grand View Research 2020

Effective anti-fibrotic activity through OliX RNAi platform acting on a validated target gene

Overview

Target protein	Administration route	Status
CTGF 1)	Intradermal injection	Phase 2 clinical trial in progress (Korea) Phase 2 clinical trial in progress (US)

Selection criteria

▶ Patients with hypertrophic scars from surgery such as C-section or plastic surgery, or trauma

Note 1) Connective Tissue Growth Factor (CTGF): A major factor that promotes development of fibrosis

Phase 2 in Korea (Hugel)

Summary of Design

- Sponsor: Hugel Inc.
- Design: Independent Evaluator-Blind, Dose-Escalation, Untreated
 -Controlled, Within-Subject, Phase 2a Therapeutic Exploratory
 Clinical Trial
- Purpose: Effectiveness and safety
- No. of participants: 30
- Status: Technology out-licensed to Hugel

Development Status

- · Verified effective fibrosis suppression in animal models
- Published in the Journal of Investigative Dermatology
- Nonclinical study and Phase 1 clinical trial in the UK: Supported by 'KOREA Drug Development Fund' Project
- Phase 2 clinical trial in progress

Phase 2 in US (olix)

Summary of Design

- Sponsor: OliX Pharmaceuticals, Inc.
- Design: Prospective, Randomized, Double-blind, Intra-subject, Placebo-controlled, Proof of Concept Study
- Purpose: Preliminary efficacy and safety
- No. of participants: 20~30
- Status: Phase 2 clinical trial in progress

Novel hair loss treatment minimizing side effects with local administration

Overview

Target protein	Administration Route	Status
AR	Intradermal Injection	Pharmacology Study

- ▶ Global Market Forecast ¹ : 8.4B USD (2018) \rightarrow 13.6B USD (2027), CAGR 5.51%
- ► For patients suffering from side effects due to systemic drug therapy
- Minimizes medical risks for female AGA patients
- ▶ Alleviates inconvenience caused by frequent administration

Nonclinical Pharmacology Data

Development Status

Verified hair regrowth in alopecia mouse model
Verified inhibition of telogen transition in AGA patient's hair follicle (ex vivo)
Three-week duration of AR knock-down efficacy with a single injection

→ Solution to unmet needs for systemic side effects and inconvenience of daily administration
Plan to enter clinical trial by 2022

¹⁾ Inkwood Research (2019), End-use and Sales Channel Outlook (Homecare, clinics, prescriptions, OTC, etc)

Unmet Medical Needs

No treatment

Subretinal fibrosis

No treatment available for subretinal fibrosis and dry AMD (GA) \rightarrow high unmet medical needs

Lucentis: \$1,933m + Eylea: \$7,908m= \$9,841m

X Source : GlobalData 2020

3-2. OLX301A: Efficacy in Animal Model

Overview

Target protein	Administration Route	Status
Undisclosed	Intravitreal Injection	Nonclinical Tox Study

- Special target indication: Geographic atrophy (GA), late-stage of dry AMD
- Available for the VEGF therapy-resistant wet AMD patients
- A potential first-in-class drug that can treat patients with both wet and dry AMD

Efficacy in animal models

Development Status

- A novel therapeutic for advanced dry AMD (GA)
- Undruggable target gene discovered by Prof. J Ambati and his team: first-in-class
- Excellent effectiveness verified in multiple animal models with wet AMD (CNV) and dry AMD (GA)
 - \rightarrow Works on both wet AMD and dry AMD (GA)
- Nonclinical toxicity study in progress with global CRO

Effective in Wet AMD NHP

CNV(Choroidal Neovascularization) Model, Fundus Fluorescein Angiography (FFA)

3-3. OLX301D: Efficacy in Animal Model

First-in-class drug for both subretinal fibrosis and wet AMD

Overview

Target protein	Administration Route	Status	
CTGF	Intravitreal Injection	Nonclinical Tox Study	

More than 60% of patients have poor or no response to the standard anti-VEGF therapy and can develop subretinal fibrosis within 2 year-treatment, leading to vision loss

► A potential first-in-class drug which can treat patients with both wet AMD and subretinal fibrosis

Efficacy in animal model

Development Status

- · Verified effectiveness in animal models with subretinal fibrosis
- Verified effectiveness in animal models with wet AMD
- Signed contract for active pharmaceutical ingredient (API) production for nonclinical and clinical trials: LGC Biosearch Technologies
- Nonclinical toxicity study in progress with global CRO

Effective in wet AMD mouse model

License & Collaboration Agreement signed in 2019, followed by an Expanded Agreement in Oct. 2020

Agreement Overview

1	OLX301A	Expanded territory from earlier agreement (EU, Middle East, Africa → Worldwide patent excl. Asia-Pacific)
2	OLX301D	Out-license agreement signed (Worldwide patent excl. Asia-Pacific)
3	Two ophthalmic pipeline programs	Upon exercise of option w/i 2 years (Same term as OLX301A/D)

Total Volume : Undisclosed

Upfront	€8,800,000
Milestone	Undisclosed
Royalty	Undisclosed
Territory	Worldwide excluding Asia-Pacific

Expanding respiratory pipeline using OliX cp-asiRNA platform technology

Overview

Active pharmaceutical ingredient (API)	Indication	Administration Route	Status
cp-asiRNA / Target undisclosed	Respiratory diseases including IPF and COVID-19	Inhalation	Looking for global partners

Development Status

- Animal proof of concept (POC) studies completed
- Established cp-asiRNA platform with improved efficacy and safety
- Pipeline development and drug candidate screening in progress

Nonclinical Study Results

Expanding liver pipeline using OliX GalNAc platform technology

Overview

Active pharmaceutical ingredient (API)	Indication	Administration Route	Status
GalNAc-asiRNA / Target undisclosed	Undisclosed	Subcutaneous Injection	Looking for global partners

Development Status

- Developed OliX's proprietary GalNAc platform technology
- Lead compound discovery is ongoing for targets suggested by liver disease experts
- Nonclinical studies planned in 2021

Scientific Advisory Board (Hepatology Experts)

Yury V. Popov

Gordon Jiang

Aaron Hakim

5-2. Effective Delivery of GalNAc-asiRNA

Nonclinical Delivery Test Results

- 10mg/kg of GalNAc-asiRNA subcutaneously injected into mouse model
- (A) Whole body, (B) Liver tissue distribution verified
- (C) Effective hepatic delivery of OliX GalNAc-asiRNA both in vitro and in vivo

(A) Whole Body Distribution

(B) Liver Distribution

(C) Cellular uptake in mouse hepatocytes

Competitive Potency and Duration of Action

Development Status

- Chemical modification optimized for efficacy and metabolic stability
- Potent and durable silencing (>90%) achieved after a single dose (up to 50 days)
- Comparable to competitors' GalNAc platforms

Developed GalNAc platform targeting two genes simultaneously

Development Status

- Optimized chemistry for stabilization & developed bi-asiRNA for linking two asiRNAs
- Confirmed comparable efficacy to the mixture of two GalNAc substances

Indication	Program	Stage of the Program			
Indication		Discovery	Preclinical	Clinical	
	OLX701C				
Liver Fibrosis	OLX701D				
	OLX702A				
Obesity / Type 2 Diabetes	OLX702B				
	OLX702C				
<i>n</i>	OLX702D				
Nonalcoholic Steatohepatitis (NASH)	OLX702E				
	OLX702F				
	OLX702G				
	OLX702H				
Hepatitis B (HBV)	OLX703A				

5-6. GalNAc-siRNA R&D Supply Contract

First in Asia to sign GalNAc-siRNA platform R&D supply contract (2020.06.24)

A Biotech Company Headquartered in Europe

OliX will apply GalNAc-siRNA platform technology to test and develop lead candidates for 4 different liver targets suggested by the contracting party.

* In March 2020, OliX obtained an exclusive license on GalNAc conjugation technology from AM Chemicals, located in San Diego.

Total Volume: USD 1,500,000

Contracting Party	Biotech Company in Europe
Subject	GalNAc-siRNA: R&D Supply Contract
Contract Period	2020.06.24 - 2021.06.23
Sales / Supply Method	In-house Production

Flexible collaboration & partnership structure

(1) Partnership on OliX's internal programs

(2) Providing OliX's RNAi platform to identify siRNA lead compounds against genes of interest nominated by partnering company

License and Collaboration Agreement Status (For the past 2 years)

Appendix

- 1. Summary of Financial Statements
- 2. Subsidiary Overview
- 3. Global RNA Therapeutics Development Status

Balance Sheet Summary

Туре	2018	2019	2020
Current assets	48,698	37,440	69,047
Fixed assets	6,939	7,767	9,530
Total assets	55,637	45,207	78,557
Current liabilities	314	2,754	4,488
Long-term liabilities	385	645	28,738
Total liabilities	699	3,399	33,226
Paid-in capital	3,252	3,265	6,771
Additional paid-in capital	71,168	71,540	81,099
Other capital components	766	1,801	11,859
Retained earnings	(20,248)	(34,799)	(54,379)
Total shareholders' equity	54,938	41,807	45,350

(Unit: million won)

Income Statement Summary

(Unit: million won)

Туре	2018	2019	2020
Operating income	302	1,130	2,474
Operating expense	8,536	16,247	18,715
Operating profit	(8,234)	(15,117)	(16,241)
Before tax Net profit	(7,742)	(14,244)	(20,511)
Tax expense	-	109	(1,126)
Net income	(7,742)	(14,353)	(19,385)

2-1. Subsidiary Overview (mCureX Therapeutics, Inc)

Company Name mCureX Therapeutics, Inc.	
CEO	Sun Woo Hong
Date of Establishment	Jan. 20, 2021
Headquarters	6F, 225-15, Pangyoyeok-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, Republic of Korea
Major Business	Development of nucleic acid therapeutics and vaccines based on mRNA technology

CEO

Sun Woo Hong Ph.D.

- 2021 Present, CEO of mCureX
- 2010 Present, Head of R&D, OliX
- 2010 2013, Research Professor, Dongguk Univ.
- 2005 2008, Ph.D. in Chemistry, POSTECH

Key Personnel

Dongwon Shin | Head of Research

- Ph.D. in Organic Chemistry, University of California, Riverside
- Postdoc, University of California, San Diego
- Senior Staff Scientist, TriLink Biotechnologies, LLC
- Director of Chemistry, OliX US
- Developed 5'-Capping technology used in COVID-19 mRNA
 - vaccines

Anton McCaffrey | Scientific Advisory Board

- Ph.D. in Biochemistry, University of Colorado Boulder
- Postdoc, Stanford University School of Medicine
- Assistant Professor, University of Iowa
- Senior Director, R&D Biology, TriLink Biotechnologies, LLC
- 30 years of experience in nucleic acid therapeutics
- (mRNA, mRNA vaccines, RNAi, antisense, etc)

"mRNA + Cure + X[Acce]lerating" mCureX

- Based on messenger RNA (**mRNA**) technology
- Rapid development of vaccines and therapeutics using proprietary mRNA platform technology
- In full cooperation with OliX and OliX US for research and development

mRNA Therapeutics Technology

- Technology for 'Next Generation Therapeutics'
- Produce disease-related proteins through in-vivo mechanism
- All proteins and antigens (vaccines) can be produced via mRNA administration

Chemically synthesized mRNA for vaccines/therapeutics

Rapid identification of drug candidate (3~5 months) Amenable to large-scale synthesis Can target various diseases with a single platform

Can produce all proteins with known amino acid sequence

First mRNA vaccine approved in 2020 (EUA) Pfizer/BioNTech | BNT162b2 | Dec. 2020 by FDA Moderna | mRNA-1273 | Dec. 2020 by FDA

Specifically induce production of disease-related proteins

Cooperate with companies with IP and intracellular delivery technology

2-3. mRNA Vaccine Development

mCureX-Samyang sign MOU for COVID19 Vaccine Development (2021.04.21)

mCureX-Samyang to co-develop mRNA vaccine

In April 2021, mCureX signed a memorandum of understanding (MOU) with Samyang Holdings Biopharm to develop a **local mRNA COVID19 vaccine** with **excellent efficacy and shelf life.**

With mCureX's proprietary mRNA technology and Samyang's delivery technology (DDS), rapid **development of vaccine** and **solutions to potential virus variants** are expected.

▲ Sun Woo Hong (CEO) of mCureX and Hye-Ryeon Jo (Director of Biopharmaceuticals R&D Center) of Samyang Holdings

Global RNA therapeutics development for various incurable diseases

Company	Product/Pipeline	Stage	Target
	Patisiran (ONPATTRO)	Commercial	Hereditary ATTR Amyloidosis
	Givosiran (GIVLAARI)	Commercial	Acute Hepatic Porphyria
	Lumasiran (OXLUMO)	Commercial	Primary Hyperoxaluria Type 1
Ainyiam	Inclisiran (Leqvio)	Commercial	Hypercholesterolemia
	Fitusiran	Late Stage	Hemophilia & Rare Bleeding Disorders
	Vutrisiran	Late Stage	ATTR Amyloidosis
	ARO-AAT	Late Stage	Alpha-1 Liver Disease
Arrowhead	JNJ-1989	Late Stage	HBV
	AMG 890	Late Stage	Cardiovascular Disease
	ARO-ENaC	Early Stage	Cystic Fibrosis
	Nedosiran	Late Stage	Primary Hyperoxaluria
Dicerna	RG6346	Early Stage	HBV
	Belcesiran (DCR-A1AT)	Early Stage	AAT Liver Disease
Cilonee	SLN360	Early Stage	Cardiovascular Disease
Silence	SLN124	Early Stage	Beta Thalassemia / Myelodysplastic Syndrome

[Representative programs from global RNA therapeutics companies]

Early Stage : IND or phase 2 | Late Stage : Phase 2b - Phase 3 | Approved : Phase 3 Completed