Diskusjon Triggere Porteføljer Aksjonærlister

PCI Biotech Småprat (PCIB)

Data som de leverte på n = 5 i cohort 4?

Vær litt jordnære her inne også da. Mye retting å lese når noe spør om hva som konkret kan ventes i nærmeste fremtid hvis man ser bort fra “partneravtaler som kan komme når som helst”, men når noen sier at mcap blir 50 milliarder innen 1-2 år med MASSE avtaler med upfront payment innen 7 mnd så er det bare jubel, likes og smile. Om denne tråden skal ha noen som helst kredibilitet så vil jeg mane til edruelighet for sånn som den leser for meg så blir det nesten en farse.

17 Likes

Har prøvd å rette opp noen drømmerier jeg og, men blir mottatt av tommel ned og harselering. Blir at man leser mindre.

3 Likes

Vacc og nac har ligget i gryta og godgjort seg i mange år nå. Vi vet ikke hvor godt produktet vårt virker klinisk. Men vi vet at det virker sykt godt preklinisk og at verdensledende selskaper er interessert nok til at de vil teste det preklinisk. Vi vet også at testene preklinisk er så gode at de stadig går videre i forskningen sin. Nå, ikke minst med Hubert sin forsvinning i den rådgivende komiteen, kan det se ut som Pcib går over i en ny fase der forskningen går over til klinisk.

Vi vet også at problemet med leveringsteknologien på vaksiner og nukleinsyrer ikke har blitt løst, selv med intens forskning i flere tiår. Om det er noe nytt på trappene vet vi ikke, men vi har ikke klart å finne noe spennende.

Folk må gjerne vente to-tre år før de går inn i Pcib, men jeg mener de har så mye interessant på gang at jeg velger å vente. Ikke minst til avklaring av vacc studiet og videre gang i nac-samarbeidene.

Vi har så mange gode grunner og indisier på at vi vil få gode resultater på alle områdene at noen av oss ikke skjønner dagens kurser.

Det er et veddemål, men ett som jeg gladelig tar.

7 Likes

Hvis noen har spørsmål om moderering kan de tas direkte på privat melding til meg, ikke i trådene.

2 Likes

foreslår å lese denne nøye, så se ser man bedre hva man kan forvente fremover:

Regular communication milestones FimaChem

  • The planned communication milestones for the pivotal study will be the initiation of the study, meaning first patient treated, and thereafter quarterly updates on the number of countries and clinical sites open for recruitment. Other milestones will be communicated as appropriate, including outcome of the IDMC reviews, as well as further details regarding timing and plan for interim analysis. In addition, the company will continue with quarterly updates on survival data and results from the dose-escalation part of the Phase I study. Regarding the extension part of the Phase I study, the full safety outcome will be reported when the study is completed and thereafter quarterly updates as for the dose-escalation part.

http://pcibiotech.no/wp-content/uploads/2018/11/PCI-Biotech-Q3-2018-Interim-Report.pdf

3 Likes

Har forresten sendt mail til PCIB angående endringen i advisory committee. Regner ikkje med å få svar.

Før eventuelt en oppdatert avtale med BioNTech :grinning:

Nok en gang tolkning og drømmerier som savner et konkret ankerfeste ifa en oppdatering fra PCIB.

Lothian

4 Likes

Godt jobba. Er enig at de er nødt til å komme med svar som f.kes at han selv ønsket å fratre etter eget ønske uten noen nærmere begrunnelse.

You good people have to pay me for this :slight_smile:
If you followed my posts here and HO you might remember my Astra Zeneca theory for fimanac through its research arm MedImmune division. Now I have a proof yipiiiii :sunglasses:

This is the research project homepage for fimanac in collaboration with bath university and medImmune (AstraZeneca) project started in 2015, the same year our top 10 pharma collaboration came to life.

https://gtr.ukri.org/projects?ref=BB%2FJ009164%2F1

If you click on outcomes and then click on collaboration you see this


If you also click on key findings you see this

Our Technology is attracting big pharma this is so positive.

Also you can read little bit on medimmune in wiki

This is the closest I got to big pharma collaboration

BUSTED

47 Likes

Innlegg som 50 milliarder innen 2 år er selvfølgelig poster som er useriøse. At du sier det er masse likes og tommel opp på slike poster er rett og slett ikke sant, men vi kunne godt klart oss uten dem.

Når det er sagt mener jeg det er like useriøst å poste som fakta at det høyst sannsynlig ikke skjer noe i PCIB før 2H i 2022. Posten til jcp latterliggjør nærmest en investering i PCIB på nåværende tidspunkt, og det er selvsagt populært for dem som har valgt å stå utenfor.

6 Likes

Veldig veldig bra!!!:partying_face:

2 Likes

Legger du ord i min munn😜 50 milliarder. En stund til.

Enig i det du skriver.

Jeg har gjentatt at i biotek tar TT. Høy risiko. Manet til langsiktighet om gode resultater jevnlig kommer inn. Noen mnd forsinkelse skjer stort sett alltid. Ikke PCIB relatert. Biotek.

Teknologien og resultater levert er per i dag svært lovende. Plukke ut 5 må du gjerne gjøre. Suverent uansett. Ser folkene bak, ansatte, styret og adv board antar jeg de stiller sterkere enn de fleste her🤓

Edruelighet begge veier.

EMA og FDA har gitt klar tale! Oslo cancer Cluster med blant annet Einarsson er positiv.

1 Like

Meget imponert over gravingen din @StockDZ Bøyer meg i støvet.

5 Likes

Et glass fylt opp til midtpunktet vil av en pessimist defineres som halvtomt. En optimist vil hevde det er halvfullt!

Enkelte ganger når jeg leser her inne tenker jeg på denne forskjellen. Vi har altså noen som er så optimistiske at interim avlesningen nærmest er på plass før julen ringes inn i 2019! Mens de mest pessimistiske på andre siden henviser til innrullerings-hastigheten på extension studien og da lever de fleste av oss neppe lenge nok til å se hva “final results” vil bli.

Jeg har troen på at forskjellen mellom kontroll-arm og eksperimentell-arm blir meget stor. Men, det trengs stor sikkerhet i dataene før IDMC griper inn. Med andre ord er innrullerings-takten nøkkelen for å nå vår “key milestone”. Jeg har tidligere våget meg ut på glattisen med en påstand om at vi kan ha en interim avlesning på plass i H1 2021. Men den skikkelig store optimisten i meg har altså en forventning om at kontroll-armen termineres før dette av etiske grunner. Men da trenger vi innrullering i verdensklasse! Og med “feasibility study” som fundament håper jeg vi får det!

Følger vi guidingen til selskapet så er altså H1 2022 mest sannsynlig tidspunkt for interim avlesning. Jeg har ingen glasskule å forholde meg til. Bare sunn fornuft. Enkelte hevder kanskje at jeg mangler det også! :joy:

Ellers tommel opp for StockDZ. Gravearbeidet ditt er av stor verdi! :smiling_face_with_three_hearts:

4 Likes

Kritikk av meninger hos andre bør du vel ikke møtes med stråmannsargumentasjon? Ellers er jeg enig at det er mange optimistiske poster som jeg selv ikke deler lik oppfatning i forhold til f.eks tidsfrister, men synes det blir feil at ikke folk skal si hva de tror. Er det som skaper diskusjoner.

3 Likes

Takk StockDZ

If MedImmune is BP it is another big milestone😜This is the closest I got to big pharma collaboration and it is clearly about FimaNac

Dette er jo bare helt sjukt. Så limer inn hele greia.

Abstract

The effectiveness of many important drugs is much reduced because they cannot be adequately delivered to the fluid inside cells where their biological targets are located. This means that higher doses are needed, leading to an increase in potential side effects and reduced patient quality of life. Such drugs are often poorly absorbed in the body because they are taken up into cells by endocytosis, where the cell wall or membrane envelops drug molecules leaving them trapped inside small compartments (endosomes, lysosomes) within the cell from which they must escape in order to reach the right part of the cell (e.g. the nucleus). If the drug cannot escape efficiently, it may instead be broken down by enzymes, or expelled from the cell. The technique of photochemical internalisation (PCI) is a novel way to get around this problem. Here, the drug of interest is administered along with a photosensitiser, a molecule that can facilitate the escape process when activated by light. Ideally, the photosensitiser is activated with a low dose of red light which causes minimal damage to healthy tissue and also allows light-activation to take place deep within the target tissue, as tissue absorption at red light wavelengths is weak. In contrast, UV light-activated drug release cannot be used effectively in tissue not only due its mutagenic effects, but also because tissue absorption of UV light is too strong and limits the effect to a depth of few cell layers from the surface. Drugs that can be delivered with PCI range from toxins for cancer treatment to molecular agents for gene therapy, and light can either be shone directly onto the target tissue or guided from a laser down optical fibres placed within the tissue to allow illumination of larger volumes. When cells are exposed to PCI light treatment, to activate the photosensitiser, these molecules absorb energy and generate short-lived reactive chemical compounds that break down the walls of the drug-containing compartments, releasing the drug to allow it to reach its target. However, in order for PCI to work effectively, the drug and photosensitiser employed must be incorporated into the same compartment inside the cell and must of course both efficiently enter the cell in the first place. The initial aim of our project is therefore to develop new photosensitiser molecules for PCI that are water-soluble, cross cell membranes effectively, and are also taken up into cells by endocytosis so that they may be localised in the right cell compartments with drugs that are administered at the same time. We have already shown that prototype molecules of this sort give a much more efficient PCI effect than that obtained with a simple photosensitiser. To further improve the PCI approach, we then want to develop systems where both a drug and a photosensitiser are associated with the same carrier molecule so that the uptake of both components is enhanced and their localisation in exactly the same cell compartment is guaranteed. To make this approach as general and as flexible as possible, we aim to develop systems where the carrier and photosensitiser can be easily interchanged, and a wide range of drug molecules can be incorporated in such a way that they can be released from the carrier inside the cell once the PCI light treatment has been carried out. As a final refinement, we will also look at the possibility of making delivery systems that can be targeted to a specific part of the body and switched on specifically in diseased tissue only, so that the PCI therapy can be performed with pin-point selectivity, exactly where it is required.
All the results of this project will be of direct benefit to the healthcare field by providing a new means to more effectively deliver diverse chemotherapeutic agents, improving efficacy, lowering dosage, and minimising side-effects.

Technical Summary

The use of several important biopharmaceuticals is severely hampered by their limited ability to reach intracellular targets. This is either due to poor diffusion across the cell membrane or endosomal/lysosomal sequestration upon uptake . Photochemical internalisation (PCI) is a promising solution which exploits the photodynamic action of sub-toxic doses of photosensitisers to promote rupture of lysosomal vesicles, so that entrapped drugs can reach their targets. PCI is designed to use red light where tissue absorption is relatively weak, unlike blue or UV light, so light-triggered, site-specific drug release can be effected at therapeutically useful depths in tissue.
We aim to develop innovative solutions to 3 key challenges in the PCI approach, using peptide-based delivery systems.

  1. Photosensitisers for PCI must be lysosomotropic, to localise in the same vesicles as administered drugs. This makes many photosensitisers clinically used for photodynamic therapy unsuitable for PCI. We aim to overcome this by conjugating photosensitisers to cell-penetrating peptides (CPPs) to both improve their uptake and control sub-cellular localisation.
  2. PCI requires the photosensitiser and drug to localise in the SAME intracellular vesicle. We can achieve this by covalently attaching a drug cargo to a peptide carrier, from which it may dissociate and reach its target post-PCI. Alternatively, a peptide carrier, with the photosensitiser attached, may be used to generate a drug-encapsulating nanoparticle, such as a liposome.
  3. For maximum efficacy, the combination of photosensitiser and drug should be delivered only to specific tissues. A CPP construct that is activated for uptake by disease-dependent levels of a protease activity is an ideal way to achieve this.
    We will characterise our constructs in detail with respect to their photophysical properties and efficiency at delivering diverse drug molecules in a variety of in vitro cell models and validate them in vivo.

Planned Impact

Our research has the potential to deliver impact for a wide range of beneficiaries, including clinicians and their patients, biomedical scientists and the pharmaceutical industry, as well as the direct academic participants at Bath and UCL. For the general public, novel methodologies that can facilitate the delivery of poorly absorbed chemotherapeutic agents will lead to the development of safer and more effective treatments, allowing the use of lower doses and reduction in chemotherapy side effects/morbidity. This outcome will have an impact upon quality of life in the UK and increase the effectiveness of public healthcare. In the pharmaceutical sector, biotherapeutics now comprise a significant proportion of all drugs on the market. Achieving the efficient delivery of such large often hydrophilic molecules to targeted tissues is a major challenge that can limit the therapeutic potential of otherwise promising clinical candidates, and may result in their abandonment, despite huge investments in their discovery and development. The development of tools that expand the scope of the PCI technique are likely to be of great benefit to the pharmaceutical industry in the next 5-10 years (half the new drugs in late-stage clinical trials will soon be antibodies, peptides, nucleic acids, and other macromolecules). For companies in the UK, this could impact positively on economic performance and competitiveness in the global market place, and thus the wealth of the UK.

As well as being of direct benefit to academic researchers in the field of drug delivery, our research will also be of benefit to the academic community at large, who will gain from the knowledge and reagents obtained in these studies that can be applied to other research endeavours (e.g. in gene therapy). The research will also have a key impact for the academic institutions involved, in that our work should produce intellectual property that would be considered very valuable by pharmaceutical companies, thus leading to the possibility to benefit from revenue streams obtained from licensing opportunities. Finally, the researchers who will perform the proposed studies will benefit from the opportunities to participate in a multidisciplinary research project, with valuable training in a range of chemical and biological techniques. This will greatly enhance their value for ultimate employment in either industrial or academic settings. As such, the project will constitute a long-term training investment in the researchers and the creative output of the UK.

We are already in discussion with potential beneficiaries and end users of our proposed research in both the clinical and commercial arena. For example, the Norwegian pharmaceutical company PCI Biotech AS (specialists in the development of PCI technology), and their research director, Dr Anders Hogset; and Mr Colin Hopper, Academic Head of the Unit of Oral and Maxillofacial Surgery, at UCL Hospital. We have similarly taken taken steps to engage with other leading academic figures in light-based drug delivery research (Prof. Kristian Berg, Institute for Cancer Research, University of Oslo, and Prof. Alex Lou, National Taiwan University). Furthermore, the National Medical Laser Centre, where the UCL group are based, is a translational research institute with extensive experience of converting fundamental bioscience into clinical applications and also exploiting its commercial potential. We are therefore very well placed to both identify results of potential interest to beneficiaries in the biomedical and pharmaceutical arenas and also maximise their economic and societal impact.

17 Likes

This is so freaking awesome :clap: I cant stop dancing :man_dancing:

8 Likes

Could you please send this article to PCIB and hear their side of the story?

Most likely they will not comment if BP is not disclosed, lets keep it this way

1 Like

I’ll start dancing when PCIB jumps over 30.

Lothian